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Al_tract--Accurate non-invasive mechanical measurement of long bones is made difficult by the masking effect of
surrounding soft tissues. Mechanical response tissue analysis (MRTA) offers a method for separating the effects of
the soft tissue and bone; however, a direct validation has been lacking. A theoretical analysis of wave propagation
through the compressed tissue revealed a strong mass effect dependent on the relative accelerations of the probe
and bone. The previous mathematical model of the bone and overlying tissue system was reconfigured to
incorporate the theoretical finding. This newer model (six-parameter) was used to interpret results using MRTA to
determine bone cross-sectional bending stiffness, EIMar^. The relationship between ElmtrA and theoretical EI
values for padded aluminum rods was R 2 = 0.999. A biological validation followed using monkey tibias. Each
bone was tested in vtvo with the MRTA instrument. Postmortem, the same tibias were excised and tested to failure
in three-point bending to determine El3_vr and maximum load. Diaphyseal bone mineral density (BMD)
measurements were also made. The relationship between E13 _rr and in vivo EIMaTAusing the six-parameter model
is strong (R 2 = 0.947) and better than that using the older model (R 2 = 0.645). Elmr A and BMD are also highly
correlated (R2 = 0.853). MRTA measurements _n vivo and BMD ex vtoo are both good predictors of scaled
maximum strength (R2 = 0.915 and R' = 0.894, respectively). This is the first biological validation of a non-
invasive mechanical measurement of bone by comparison to actual values. The MRTA technique has potential
clinical value for assessing long-bone mechanical properties.
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INTRODUCTION

In order to effectively evaluate and monitor the strength and
load-carrying capacity of long bones in vivo, an objective non-
invasive measurement is desirable. Currently, bone mineral den-
sity (BMD) and bone mineral content (BMC), determined using
dual-energy X-ray absorptiometry, are the state of the art clini-
cal measures of bone integrity. The mineral mass of a bone,
although essential, does not provide a complete measure of bone
strength (Ott, 1993). Attempts to account for cross-sectional
geometry along with bone mineral (Beck et al., 1990) do not
allow for variations in cross-sectional or material properties of

the bone nor can they take into account the composite nature of
the bone. Numerous factors influence the behavior of the bone
in addition to the amount and distribution of mineralization

(Carter et al., 1992; Cordey et al., 1992).
Martin (1991) outlined the determipants of strength and stiff-

ness to be (i) size and shape, and (ii) mechanical properties of the
composite material. Contributing to the mechanical properties
of the composite material are the composition (porosity and
mineralization) and organization (trabecular and cortical bone
architecture, collagen fiber orientation, and amount of fatigue
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damage) of the tissue. The importance of these factors in deter-
mining the overall functional behavior of the long bone has been
shown in a number of studies. Several researchers have found
that either mineral content does not correlate well with stiffness

and failure properties or that other parameters (e.g. collagen
fiber orientation and texture parameters) better predict these

functional properties (Currey, 1990; Martin and Ishida, 1989;
Mudinger et at., 1993). In order to account for all the geometric
and composite material properties, there is a need for a reliable
direct mechanical measurement in vit,o of bone load-carrying
capacity, as indicated by stiffness and strength.

Efforts at direct mechanical measurements of long bones have

been primarily focused on vibration response techniques
(Dimarogonas et al., 1993; Hight et al., 1980;, Jurist, 1970, Young
et al., 1976; Van der Perre et al., 1983). While much progress has
been made, none of these techniques has been clinically
validated nor is commonly used. A major impediment has been
accounting for the effects of the soft tissue overlying the bone
which can cause inconsistency in the measured response (Cor-
nelissen et al., 1986; Van der Perr¢ et at., 1983; Young et al.,

1979).
A vibration response method, mechanical response tissue

analysis (MRTA), has shown promise for clinical application to
human ulnas (McCabe et al., 1991; Myburgh et al., 1993, 1992).

This method is particularly appealing for the clinic because the
test is fast (several seconds), portable, and safe and comfortable
for the patient. A low-frequency random vibration is applied
transcutaneously to the mid-diaphysis of a long bone with
a shaker probe, and force and acceleration of the probe are
measured simultaneously. The real-time data are transformed
into frequency domain and analyzed.
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The analysis method used in previously reported MRTA
studies was based on a seven-parameter mathematical model of
the skin and soft tissue, the surrounding musculature, and the
bone (Steele et al., 1988). While this method appeared to be
successful in quantifying cross-sectional bending stiffness in the
human ulna, it proved inadequate in tests of smaller and more
flexible monkey tibias. The variation among tests in vivo of the
same limb was unacceptably large and the fit to the response
curve for individual tests was poor.

In order to improve these results, a more advanced theoretical
understanding of the behavior of the soft tissue was sought.
With this, a reformulation of the model and algorithm was
undertaken, and the new model was validated in vivo using the
monkey tibia.

METHODS

Model and algorithm development

The basis for the refinement of the mechanical model was an

analysis of the behavior of the thin layer of soft tissue between
the forcing probe and the bone. The skin and underlying tissue
were assumed to be a continuous, homogeneous, incompress-
ible, and elastic layer between the rigid test probe above and
rigid bone beneath (Fig. l). In general, the soft tissue layer has
highly non-linear mechanical behavior. However, with this
method, a relatively high static preload is used (8 N for human,
2-4 N for monkey), and the amplitude of vibration about the
static compressed state is very small. For this case, the limiting
assumption of linearity is valid (Parker et at., 1990). The appro-
priate equation of motion in the radial direction is

0

_(ro,) - o, = pr_. (1)

The continuum and stress-strain relations for an incompressible
material describe the state of stress within the thin layer.

tr, = a_Ee, - p,

O"e = 32_Fgo -- p,

o',= a2E_=-p,

F., = 1 [_, -- v(a, + o=)]. (2)

Here p, a,, %,a:,p, E, v and u are the pressure, stresses in the
radial, circumferential and vertical directions, density, Young's

.......... =l . T _ | • _-

Fig. 1. The shaker probe vibrates the soft tissue and underlying
bone. Waves radiate out from the center of the probe through
the soft tissue. F, applied force; ,5, probe displacement; a, probe

radius; t, tissue thickness; u, radial displacement.

modulus, Poisson's ratio, and radial displacement, respectively,
and the dots indicate differentiation with respect to time.

Strains in the radial (c,). circumferential if'e), and vertical (e=)
directions are related kinematically to the vertical displacement
of the probe (_).

6 6 6

E,=_t, ee_t, e_= --.t (3)

Balancing the driving force of the probe on the skin with the
reaction force of the skin on the probe, one obtains the relation

= - 21rfltr=rdr. (4)
F

The appropriate boundary condition for the annulus of skin,
free to slip at upper and lower surfaces, at r = a is approximated
by acoustic impedance corresponding to an outward radiation
of waves through the continuous medium.

_,l,:. = - pc_,. (5)

Here fi,.is the velocity at r = a and c is the plate velocity given by

c - \3p] " (6)

Equations (1)-(6) lead to an expression for applied force in
terms of physical parameters of the tissue and acceleration,
velocity, and displacement of the probe.

\ 8t / \_i-t-/ (7)

The coefficients of acceleration, velocity, and displacement in the
above equation have the following physical significance in the
model of the tissue layer:

F = m,_ + b, di + k,8. (8)

Here m s, bs, and ks are the effective mass, damping, and stiffness
of the soft tissue. Reasonable values of density, Young's
modulus, tissue thickness, and probe radius were substituted
into the coefficient terms in equation (7) and compared to typical
values for the soft tissue covering human ulnas found using the
mechanical response tissue analysis technique in vivo (Steele
et al., 1988).

With this improved representation of the behavior of the soft
tissue, the entire physical model was modified to a six-parameter
model consisting of the effective bending stiffness, damping, and
mass of both the bone and soft tissue (Fig. 2). The seventh

parameter present in the former model, parallel damping (bp),
has been accounted for within the soft tissue damping term (bs)
in the present formulation. Also, the inertial component of the
skin mass is now dependent on the relative displacement of the
probe and the bone in the plane of the forcing. The properties of
the soft tissue are largely due to the displacement of, and propa-
gation of waves through, the relatively stiff tissue compressed
beneath the probe.

The six-parameter model required development of a new
solution technique. Unlike the seven-parameter algorithm,
a closed-form solution does not appear to be feasible because the
system is overconstrained. There are still seven non-linear alge
braic equations relating the physical parameters to coet_cients

in the polynomial transfer function, but now there are only six
unknown physical parameters. Therefore, an iterative technique

was developed in order to extract the mechanical properties of
the bone and overlying soft tissue from the measured transfer
function. This technique uses the closed-form solution of the
seven-parameter model as the starting values for the iterative
procedure with parallel damping and skin damping terms com-
bined into a single effective skin damping term.

A quasi-Newton method is then used to iterate all six para-
meters to minimize an objective function. The objective function
depends on the difference between the measured and model
stiffness (F/b) and compliance (b/F) values at each point. Thus,
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Fig. 2. (a) The seven-parameter model consists of the effective
masses of the soft tissue (m s) and bone (r%) in series with linear

springs (k s and kb) and viscous dash pots (b s and bb) and

a parallel viscous dash pot (bp) connected to the skin mass.
(b) The six-parameter model consists of the effective mass of the

bone (rob) along with springs (k s and kb) and viscous dash pots (b s

and bb) in series. In this new model, the motion of the effective

skin mass (m s) is a function of the difference between the dis-

placement of the skin, x r and the displacement of the bone, x 2.

the objective function will be equal to zero with a perfect fit of

the model response to the experimental response. More signifi-

cance is given to the stiffness values in the summation because it

is numerically more diffcult to achieve a good fit for the stiffness

curve. With the seven-parameter algorithm, a weighting func-

tion is used such that different weights can be given to different

frequency ranges in formulating the objective function. With the

six-parameter algorithm frequency weighting is not necessary. If
the quasi-Newton method causes a change of more than 25*/0 in

the value of any one of the six parameters in one step, the step is

ignored and a line search is performed in each parameter direc-

tion. The six-parameter algorithm then reverts to continuing the

quasi-Newton procedure until the objective function reaches

a sufficiently small value.

Method validation

re-analyze the responses in previously reported (Steele et al.,

1988) tests in eit, o of human ulnas.
As an initial validation of the six-parameter model and algo-

rithm, MRTA tests were performed on four aluminum bars

(Gait Scan, Inc.). Round aluminum bars of differing cross-sec-
tions were tested, each at least three times. A rubber pad was

placed at the center of the bar to simulate the soft tissue between

the probe and the specimen. These data were analyzed using

both the seven-parameter and the six-parameter models and

algorithms. Theoretical values of EI were calculated from the

known value of Young's modulus and the radius of each bar.

A biological validation study involving 12 rhesus monkeys,

Macaca mulatta, was completed in order to compare the abilities
of the two models and algorithms to identify accurately the

mechanical properties of bone and soft tissue in t_ivo. The mon-

key model was chosen because of its importance in many stud-

ies, including NASA space-flight. The monkeys were from two
sources (UC Davis Primate Center, NASA Ames Research

Center) and, due to illness, were scheduled for necropsy. The

animal protocol was approved by the Animal Care and Use

Committees of NASA Ames Research Center and University of

California, Davis. The ages of the animals ranged from 2 to 10 yr

(mean '-5.5 + 3.1) and the body mass ranged from 2.5 to

12.7 kg (mean = 6.3 5: 3.7). The monkeys' tibial lengths (range

was 0.115-O.185 m; mean = 0.153 -t- 0.023) were measured in

vlvo with a metal tape from the edge of the medial condyle to the

most distal edge of the medial malleolus. The accuracy of this
measurement in vivo was confirmed postmortem by measure-

ments of the excised tibias, also made using the metal tape. The

monkeys were sedated, and each tibia was tested at least three

times using the equipment manufactured for MRTA testing. The

proximal and distal ends of each tibia were stiffly supported in

a specially designed small animal apparatus in order to approx-

imate the pinned-pinned end conditions assumed in the model

(Hutchinson et al., submitted). This apparatus provided padded

clamping support from the medial, lateral, and posterior aspects

of the condyle and the maIIeoli.
After euthanasia of the animal, each bone was excised, frozen,

and ldter tested to failure in three-point bending on an Instron

(Model 1122) machine. The frozen bones were thawed to room
temperature and kept moist. Holes were drilled through the

proximal and distal ends parallel to each other in the coronal

plane. Surgical steel pins were inserted through these holes. Each

bone was supported by these pins in a rigid frame in the same

position as the MRTA tests in t, ivo such that the anterior surface

was facing the crossbar, and the frame was clamped to the
lnstron test table (Fig. 3). The crosshead contact was centered

between the pin supports. Each tibia was tested to failure in
three-point bending at a displacement-controlled crosshead

speed of 10 mm min- 1. From the strip-chart recordings of load

versus displacement, the lateral bending stiffnesses were deter-

mined as the slopes in the linear region and maximum loads

F,8

The proposed changes to the physical model and algorithm

did not necessitate any changes in the method or equipment

used for d_ata collection during the MRTA tests (Gait Scan, Inc.,
Ridgewood, NJ). The method detailed in Steele et al. (1988) was

used. With this method, the transfer function is found from the

force and acceleration responses measured at the forcing probe.

The same experimental transfer function is used for both the six-

and seven-parameter analysis. Because of this, it was possible to

Fig. 3. The monkey tibias were supported in a pinned-pinned

configuration with the crosshead centered between supports.
The crosshead made contact with the anterior aspect of the

bone. In the MRTA tests in vivo, there is the soft tissue layer

between the probe and bone, musculature has significant mass

and damping, and the pad end supports have little resistance to

axial displacement.
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Fig. 4. The lateral bending stiffness and maximum load were

determined from the load versus displacement curve for the

three-point bending test of each excised monkey tibia. The

lateral bending stiffness is the slope in the linear region.
The curve shown was scanned in from the actual strip-chart

recording.

were recorded (Fig. 4). The bones were promptly frozen for

future analysis.

The lateral bending stiffness values, k b, found using MRTA

and three-point bending cannot be directly compared because

the distances between supports in the two tests were different.

The lateral bending stiffness values were converted into cross-
sectional bending stiffness, EI, using the relation derived from

elementary beam theory.

kbL 3
EI - (9)

48

For the bending tests, the value of length, L, was the distance
between hole centers; for the MRTA tests, L was the total limb

length (not the actual distance between supports).
The data from MRTA testing were processed using both the

six- and seven-parameter algorithms, and the results were as-
sessed relative to the three-point bending test results.

Significant adjustment of the weigh'ting function was required
on each individual seven-parameter analysis in order to achieve

an adequate least-squares curve fit to the transfer function. For

the six-parameter analysis, however, all files were batch pro-

cessed at once with the number of iterations limited to 40.

Bone mineral properties were determined for both the entire
bone and the middle one-third section using dual-energy X-ray

absorptiometry (QDR 1000/W, Hologic Inc., Waltham, MA) in

order to compare the MRTA technique to this clinically impor-
tant non-invasive measurement. The excised tibias were scanned

in 0.08 m of water with a 0.02 m Plexiglas base to provide a soft

tissue equivalent baseline. The bones were positioned horizon-

tally to provide an A P view. Values of bone mineral content
(BMC, in g), area of region scanned (cm2), and areal bone

mineral density (BMD, in gcm- 2) were obtained for all except

two bones. In these bones, the mineral content appeared to be

below threshold levels in the distal one-third section, and no

total bone values were available; values were available for the

middle one-third section. The precision of this method was high

(percent coefficient of variation = 0.43%) as determined by re-
peated scans ( x 4) with repositioning performed on five bones.

The anterior-posterior and medial-lateral diameters at the

center of the cleaned and excised bones were measured using

digital calipers. Where there was a measurable deformation,

measurements just proximal and distal to the center were aver-

aged.

RESULTS

Theoretical values for effective mass, damping, and stiffness of

the soft tissue are in good agreement with typical values
measured in MRTA tests of human ulnas in t,it:o (Table I). The

effective mass is significantly larger than the actual mass of the

tissue under the probe because of the large radial displacement
of tissue that results from a relatively small vertical displacement

of the probe, as can be seen from the kinematic expressions.
The fit of both the stiffness and flexibility response curves for

all specimens using the six-parameter model and algorithm was

consistently close, converging within 40 iterations in all cases

and within 10 in most cases (Fig. 5). These curves include both

the real and imaginary parts of the stiffness and flexibility

responses. Processing in this iterative manner was, however,

more time consuming than using the seven-parameter algo-

rithm. Typically, using the six-parameter algorithm required

I-2 min to process while using the seven-parameter algorithm

required 1 s to process. With very few exceptions, there was

negligible change in the results using the six- vs. seven-parameter

model and algorithm for the tests in vivo of the human ulnas.
For the tests of aluminum bars, linear regression analysis

demonstrated that the value of cross-sectional bending stiffness,

EI_R-rA, analyzed using the six-parameter model and algorithm

was a strong predictor of the theoretical value, with R 2 = 0.999

(Fig. 6). Further, the MRTA values were within 5% of the

theoretical values for all four specimens when the six-parameter
model was used. A similarly good fit (R 2 = 0.998) was found

when the seven-parameter model and algorithm were used;
however, these MRTA values were only within 11% of theoret-
ical values.

For the 21 tibia specimens included, the range of values for

EIMRrA in oivo was 2.4-22.5 N m 2 (mean = 8.5 + 5.3). The range
of values for cross-sectional bending stiffness measured in three-

point bending, El3_rr, was 1.45-13.9 Nm 2 (mean = 5.0 -t- 3.3).

Data on three monkey tibias were not included in this analysis
because of difficulties with the test fixture.

Stronger relationships were found in all of the following

analyses using BMD of the middle one-third section rather than
of the entire tibia (compare with Roberts et aL, 1994). Therefore,

results are presented using BMD of the middle one-third section
of all bones.

There was a stronger relationship between El determined in

three-point bending and El determined with MRTA in vit,o

when the six-parameter model and algorithm were used rather

than the seven-parameter model (R 2 = 0.947 vs. 0.645, respec-

Table 1. Theoretical values similar to experimental values ob-
tained in a MRTA test in vivo of a human ulna were found for

the effective mass, damping, and stiffness of the layer of soft
tissue between the test probe and the bone using equation (7).

Experimental values for a group of subjects vary significantly;

these given are typical for the 8 N preload. The material and

geometric values for Young's modulus, density, probe radius,
and tissue thickness were 4MPa, 1000kgm a, 5mm, and

l ram, respectively (Millington and Wilkinson, 1983; Parker et

at., 1990; Silver, 1987)

Skin parameter Units Theoretical Experimental

Effective mass g 0.245 0.239

Effective damping Nsm -1 14.34 11.97
Effective stiffness kN m - _ 314.2 322.5

,k.ct ual mass g 0.079 NA
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Fig. 5. Columns A, B, and C contain the real and imaginary parts of the stiffness and flexibility response
curves (solid) and corresponding six-parameter curve fits (dashed) for the three specimens. The sharp peaks
in the response curves of the aluminum bar are due to the relatively small damping of the bar and rubber
pad. The curves of the monkey tibia are quite different from those of the other two specimens; however, the

six-parameter algorithm achieves a close curve fit for all three.

tively; Fig. 7). Further, this six-parameter EI,_rA displayed
a better linear fit than did BMD with EI3_rr (R = 0.876; not
shown).

Littledifferencewas notedinassociationsbetweenEImv A or
BMD and scaledmaximum load,definedas loadmultipliedby

pinned length and anterior-postcrior diameter (R2 = 0.915 and
0.894, respectively; Fig. 8). The relationship between scaled max-
imum load and El3.rr was very strong (R 2 = 0.978; not shown).

Finally, EI,RTA and BMD are strongly related (R2 = 0.853)
(Fig. 9). All regressions are significant (p < 0.001).
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Fig. 6. The linear regressions of the six-parameter algorithm
(solid line) and the seven-parameter algorithm (dashed line) on
theoretically calculated values for tests on aluminum bars are

presented along with the corresponding coefficients of deter-
mination. Both algorithms have very high linear regression
values, bot the results from the six-parameter algorithm are

closer to the theoretical values.
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algorithms on EI 3 _vr are presented along with the coefficients of
determination. The relationship was much stronger for the re-

sults using the six-parameter algorithm.

DISCUSSION

The mechanical response tissue analysis technique, with the
improved six-parameter model and algorithm, is a useful
measurement of cross-sectional bending stiffness of long bones
in vivo, as has been shown here for the monkey tibia. Further,
this stiffness, measured with the MRTA instrument in vivo and
the lnstron ex vivo, is highly correlated with scaled maximum

load in three-point bending (R 2 = 0.915 and R 2 = 0.978). For
measurements ex vivo, Borders et al. (1977) and data from Jurist

and Foltz (1977) show similar relationships between fracture
moment and bending stiffness in fresh canine radii and em-
balmed cadaveric ulnae, respectively (Table 2). Further, as in the
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Fig. 8. The linear regressions of EIMRr^ in vivo (solid line) and
BMD ex oivo (dashed line) on maximum load scaled by pinned
length and anterior-posterior diameter are presented along with
the coefficients of determination. The value of EIMxTAis a better

predictor of scaled maximum load than is BMD.
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Fig. 9. The linear regression of BMD on EIMt_T A and the corres-
ponding coefficient of determination are presented. The two are

shown to be strongly related measures of bone integrity.

present study, both found stiffness to be a better predictor of
failure strength than bone mineral. The reported predictive
value of bone mineral measurements ranges from R 2 = 0.15 to

R 2 = 0.90 (Jurist and Foltz, 1977; Myers et at., 1991). Thus, it
appears that El is a more robust indicator of fracture strength
because of consistently high correlations with fracture proper-
ties.

This is the first time, to the authors' knowledge, that a mech-

anical test of long-bone functional properties in vivo has been
validated by direct comparison to the same property measured
in a static ex vivo test. Modeling the bone as a simple beam

appears to be valid in this frequency range where there is one
significant bending mode. In the static bending tests, the max-
imum deflection of each bone did not exceed 15% of the outer
cross-sectional diameter;, it is therefore not necessary to consider

any stiffening effect of the supports, and the Bernoulli-Euler
beam theory is valid (Frisch-Fay, 1962). The simply supported

beam model presented here assumes firm support at the prox-
imal and distal ends of the bone. If firm support is lacking,

a more complex model, incorporating additional vibration
modes, would be necessary.

There is a close relationship between the results from tl_
MRTA tests in vivo and three-point bending (R 2 = 0.947); how-
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Table 2. Representative relationships between bone strength and stiffness or bone mineral

illustrate the usefulness of stiffness and the inconsistency of bone mineral as indicators of

structural integrity

Study Specimen Measurement R 2

Borders et al. (1977) Fresh canine radii E1 0.92
BMC 0.8 !

Jurist and Foltz (1977) Embalmed cadaveric ulnae E1 0.90
BMC 0.88

Myers et al. (1991) Frozen cadaveric radii BMD 0.15
Geussens et al. (1992) Frozen monkey radii BMD (whole) 0.55

BMD (diaphysis) 0.64

Present study In vivo monkey tibia EI (MRTA) 0.92

Frozen monkey tibia EI (lnstron) 0.98

BMD (diaphysis) 0.89
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ever, values of EIMaTA were approximately 60% higher than

those found from Instron tests. This is attributed to the fact that,

for the tests in vivo, total limb length was used in the calculation
of cross-sectional bending stiffness. While the measurement in

vivo of total limb length is accurate, the actual distance between

the points of bone support is not known precisely because of the

pad supports. Because this length term is cubed in the calcu-
lation of EI from lateral bending stiffness [equation (9)],

a 10 mm central shift in the position of bone support, a phys-
ically realistic testing configuration, would account for ihe dif-
ference between the in vivo and ex vioo values of EI. From these

results, the effective length of the tibias in the supports in vivo is

85% of the total limb length.

In comparisons of data analyzed using six- and seven-para-
meter models and algorithms, there was little distinction be-

tween the human ulna results while tremendous improvement

was observed for the monkey tibias (R _ = 0.947 and R 2 = 0.645;

Fig. 7). The response curves of the two bones (Fig. 5, columns

B and C) demonstrate that dynamic responses of the bone and

tissue systems are quite different from one another. This differ-

ence is presumably due to the larger role played by the soft tissue

in the measurement of the monkey tibia. In both human (Young

et al., 1976) and monkey, compressed soft tissue is effectively

stiffer than the underlying long bone in bending, but the differ-
ence is greater for the smaller and more flexible monkey tibia.

While soft tissue does not have a large influence on the dynamic

behavior of the bone itself (Cornelissen et al., 1986), the soft

tissue does significantly mask the response of the underlying

bone. The MRTA technique is unique among non-invasive
mechanical techniques in that the behavior of the sof,t tissue has

been modeled. Because the six-parameter model contains a more

physiologically realistic representation of the soft tissue, the

difference in the two models is highlighted in the monkey.

The value E1 has greater physical significance than does BMD

for quantifying long-bone structural integrity. In addition, it is

obtained by direct mechanical measurement. Bone mineral is

only one of many factors influencing the strength and other
structural properties of bone. The value El, on the other hand, is

a function of the material composition, as well as the geometry

and internal architecture of the bone. The importance of consid-

ering these additional properties is exemplified here in that E1 is

a slightly better predictor of maximum load than is BMD.

Further, the bone mineral measurement was performed on the
excised tibia, not in vivo as was the vibration test. This measure-

ment in vivo of cross-sectional bending stiffness is particularly
meaningful in that it provides a now proven method of evaluat-

ing and monitoring the actual structural integrity of long bones.
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